About Me
- vagdevi
- This blog is to distribute jntu biotech prev papers ,GRE ,IELETS BOOKS to every one.if u want to give any suggestion..mail to vagdevi2k5@gmail.com...regards P.Vagdevi,B.I.E.T(Bharat Institue)
Labels
- BASIC ELECTRICAL AND ELECTRONIC ENGINEERING(BEEE) (10)
- BIO DIVERSITY IPR ANS MANAGEMENT OF BIOTECHNOLOGY (3)
- BIO PROCESS ENGINEERING-I (10)
- biochemistry (1)
- BIOSENSORS AND BIO ELECTRONICS (4)
- BIOTECH COMPANIES AND INSTITUTES OFFERING PROJECTS FOR ACADEMIC PURPOSE OF STUDENTS (1)
- BIOTECH COMPANIES IN INDIA (1)
- cell biology (2)
- CHEMICAL AND BIOTHERMODYNAMICS (3)
- DOWN STREAM PROCESSING (6)
- E-books for biotech or biology (15)
- ENZYME ENGINEERING AND TECHNOLOGY (8)
- FOOD SCIENCE AND TECHNOLOGY (3)
- FUNDAMENTALS OF BIOLOGY (11)
- GENETICS (2)
- GRE (7)
- IELTS (9)
- MEFA (1)
- METABOLIC ENGIEERING (5)
- METABOLIC ENGINEERING NOTES (5)
- MICROBIOLOGY (1)
- MOLECULAR BIOLOGY (7)
- MOLECULAR BIOLOGY OF CANCER (6)
- MOLECULAR MODELLING AND DRUG DESIGN (2)
- NEUROBIOLOGY AND COGNITIVE SCIENCES (3)
- PROCESS ENGINEERING PRINCIPLES (3)
- TOEFL (4)
Thursday, November 20, 2008
Metabolic engineering applications to renewable resource utilization
Lignocellulosic materials containing cellulose, hemicellulose, and lignin are the most abundant renewable organic resource on earth. The utilization of renewable resources for energy and chemicals is expected to increase in the near future. The conversion of both cellulose (glucose) and hemicellulose (hexose and pentose) for the production of fuel ethanol is being studied intensively, with a view to developing a technically and economically viable bioprocess. Whereas the fermentation of glucose can be carried out efficiently, the bioconversion of the pentose fraction (xylose and arabinose, the main pentose sugars obtained on hydrolysis of hemicellulose), presents a challenge. A lot of attention has therefore been focused on genetically engineering strains that can efficiently utilize both glucose and pentoses, and convert them to useful compounds, such as ethanol. Metabolic strategies seek to generate efficient biocatalysts (bacteria and yeast) for the bioconversion of most hemicellulosic sugars to products that can be derived from the primary metabolism, such as ethanol. The metabolic engineering objectives so far have focused on higher yields, productivities and expanding the substrate and product spectra.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment